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The combination of 1H NMR fingerprinting of lipids from gilthead sea bream (Sparus aurata) with
nonsupervised and supervised multivariate analysis was applied to differentiate wild and farmed fish
and to classify farmed specimen according to their areas of production belonging to the Mediterranean
basin. Principal component analysis (PCA) applied on processed 1H NMR profiles made a clear
distinction between wild and farmed samples. Linear discriminant analysis (LDA) allowed classification
of samples according to the geographic origin, as well as for the wild and farmed status using both
PCA scores and NMR data as variables. Variable selection for LDA was achieved with forward
selection (stepwise) with a predefined 5% error level. The methods allowed the classification of 100%
of the samples according to their wild and farmed status and 85–97% to geographic origin. Probabilistic
neural network (PNN) analyses provided complementary means for the successful discrimination
among classes investigated.
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INTRODUCTION

Nowadays availability and international trade of fish and
seafood are strongly conditioned by food safety norms. Several
European Directives have introduced safety standards into the
chain for fisheries and aquaculture products with the concept
“from farm to fork”, usually based on the Codex Alimentarius
provisions (1).

A labeling regulation for fishery and aquaculture products
came into effect in the European Union in 2001, requiring
identification of the official commercial and scientific name,
the origin of the fish, and its production method (farmed or wild)
(2). This regulation aims to provide consumers with basic
information on characteristics of such products and is enforced
at a national level, like in Italy by the Ministry of Agriculture
Decree No. 27.03.02 on the labeling of fish products. On these

bases there is a need for research delivering both a product-
specific and a general analytical traceability system for fish
products, verifying existing paper traceability schemes on
production methods and the geographic origin of fish.

Gilthead sea bream (Sparus aurata) is an economically very
important fish species, cultured in Italy and, in general, in the
Mediterranean basin (3). The market demand and, as a result,
the price for fresh sea bream have increased markedly over the
past decade because of the desirable aroma and quality attributes
of this fish; consequently, its farming is deemed to be a profitable
business. Thus, the European fish farmers have gradually
expanded their annual production from 3148 t in 1990 to 61 284
t in 2001, but on the other hand intensive production of sea
bream has raised concerns over the quality of cultured fish in
comparison with wild fish.

Within this frame, there is a need to develop reliable analytical
methods to assess both wild and farmed fish as well as their
geographic origin. Different analytical strategies can be applied
to address these authenticity issues depending on the available
technique (4). One possibility is to study the composition of
lipids extracted from the fish muscle. High resolution nuclear
magnetic resonance (NMR) spectroscopy has been used for the
compositional study of complex mixtures of lipids providing
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both qualitative and quantitative information (5–8). 13C NMR
provides, for instance, a reliable method to unambiguously identify
several fatty acids and to establish the stereochemistry of unsatur-
ated fatty acids as well as their position on the glycerol backbone
in fish lipids (9–12). Furthermore, 1H NMR allows a rapid
acquisition of the lipid profile containing information on different
lipid classes, the global unsaturation level, ω-3 polyunsaturated
fatty acids, and eventual oxidative deteriorations (9, 13–17). Lipid
extracts from fish have also been studied by 1H and 2H NMR (SNIF
NMR) (18). The combination of the 13C/12C isotope ratio measured
by isotopic ratios mass spectrometry (IRMS) and D/H measured
by 2H NMR have been used for multivariate analysis to discrimi-
nate wild and farmed salmons (19).

1H NMR spectroscopy has extensively been used in other
areasmainlyinmetabolomicstudiesfordiagnosticpurposes(20–23).
The aim of this study was to apply 1H NMR spectroscopy in
combination with multivariate statistics to lipid extracts from
Gilthead sea bream (S. aurata) to achieve the distinction of wild
and farmed specimens and to classify them according to the
geographic origin of production.

MATERIALS AND METHODS

Collection and Preparation of Samples. From September 2003 to
June 2004, 46 species of farmed sea bream (average weight ) 326.7
g) were purchased from four different productive countries (Italy,
Greece, Croatia, and Turkey). At the same time 19 wild sea bream
(average weight ) 241.4 g), caught in the Mediterranean Sea, were
collected from the wholesale fish market of Milan. The collected
samples were stored at -20 °C until extraction of lipids.

Extraction of Muscle Lipids. Lipids were extracted from muscular
tissue according to the method described in ref 24. Briefly, oil was
extracted from 10 g of tissue with a chloroform/methanol mixture in a
pyrex test tube using an ultraturrax (24 000 rpm under ice cooling) for
2 min. After extraction the lipids were stored at -20 °C.

1H NMR. Oil samples (50 mg) were diluted in 700 µL of
deuterated chloroform (CDCl3, Aldrich, 99.8% deuteration) in a 5
mm NMR tube for analysis. NMR spectra were registered on a
Bruker (Rheinstetten, Germany) DRX-500 instrument operating at
500.13 MHz for 1H observations using a 5 mm inverse detection
probe maintained at 300 K.

1H NMR spectra were digitized into 64K data points over a spectral
width of 10 000 Hz with an acquisition time of 3.3 s. An additional
relaxation delay of 2 s was included, making a total recycling time of
5.3 s. A 30° pulse was used, and 128 transients were coadded before
Fourier transformation. The number of dummy scans was 16.

Spectra were Fourier transformed applying a line broadening
apodization function of 0.1 Hz. Chemical shifts were calibrated against
the residue of protonated chloroform at 7.28 ppm. All spectra were
manually phased, and baseline correction was then applied. Spectra
were integrated using the AMIX software (Bruker) into a series of 165
bins (buckets) of 0.04 ppm over the range of chemical shifts from 7.2
ppm to -0.5 ppm. Buckets were expressed either as raw data or reported
to the overall intensity of the spectrum (scaled). These buckets represent
the descriptors for multivariate analysis. Spectral regions from 3.1 to
3.95 ppm and from 1.07 to 1.24 ppm were removed from the integration
procedure because of the presence of signals from ethanol residues
coming from the extraction step. By this method, the choline signal
exhibiting a significant shift of its resonance (around 3.4 ppm) was
also not integrated to exclude any extra variance in our data set of
variables. A typical 1H NMR spectrum is reported in Figure 1.

Chemometric Techniques. Principal Component Analysis (PCA).
The dimensionality of the data can effectively be reduced by using
PCA, particularly because the bucketed 1H NMR data are highly
correlated. Abstract principal components (PCs, factors) are formed
from the original variables so that the new PCs should be orthogonal.
The number of n-dimensional points can be projected in a smaller
dimension hyperplane. Clusters and eventual outliers can be observed
in a smaller dimension easily. In many cases, PCA models can be used
for a successful classification, if the class memberships are known in
advance. However, PCA optimizes the directions of largest variability
(variance) and not the largest class separation ability. Two integration
(bucketing) methods were applied: raw bucketing and scaling to the
total intensity. Scaling the buckets to the overall intensity involves
expressing each variable as a percentage of the whole lipid profile,
except for obviously the excluded regions. The PCA was carried out
on the correlation matrix; that is, standardization (mean centering and
scaled to unit standard deviation) has been applied as data pretreatment.
The model building has been performed by Statistica 6.0 program
package (25) using the factor analysis module.

Linear Discriminant Analysis (LDA) and Canonical Correlation
Analysis (CCA). In LDA a linear function of the variables is sought,
which maximizes the ratio of between-class variance and minimizes

Figure 1. 1H NMR spectrum of Gilthead sea bream lipid extract. 1, All fatty acids (f.a.) s(CH3) except n – 3 f.a.; 2, n – 3 s(CH3); 3, all f.a. s(CH2)ns
except 20:5 and 22:6; 4, f.a. sCH2sCH2sCOOH except 22:6 and 20:5; 5, unsaturated f.a. sCH2sCH)CH; 6, all f.a. sCH2sCOOH except 22:6; 7,
22:6 dCHsCH2sCH2sCOOH; 8, polyunsaturated f.a. dCHsCH2sCHd; 9, phosphatidylcholine sN(CH3)3; 10 and 11, glyceryl C1,3 protons; 12,
glyceryl C2 protons; 13, unsaturated f.a. sCH)CHs; and 14, CHCl3.
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the ratio of within-class variance. LDA can also be considered as a
dimension reduction method. It projects points to a smaller dimension
hyperplane. LDA selects directions, which achieves maximum separa-
tion among the given classes. The latent variable (canonical variate,
root) obtained by CCA is a linear combination of the original variables.
If we have more variables than k classes, k – 1 canonical variates can
be determined. A variant of this method is the stepwise discriminant
analysis that permits the variables with a major discriminant capacity
to be selected. The description of the LDA and CCA algorithm can be
found in refs 27–29. Discriminant models have been developed by the
Statistica 6.0 program package (26) using the general discriminant
analysis, LDA, and CCA modules.

Probabilistic Neural Network (PNN) Analysis. PNN networks have
three layers: input, pattern, and summation. The input layer has as many
elements as there are individual parameters needed to describe the
samples to be classified. In the present case the input parameters were
scores derived from PCA of the original spectroscopic data. The PNN
calculations used systematically decreasing numbers of input scores to
derive the best compromise between the use of a minimum number of
inputs and the best predictive models. Training for PNN nets using the
genetic adaptive option tests a whole range of smoothing factors
(multipliers for each input), trying to optimize a combination that works
best on the network created from the training set. The stopping criterion
involved minimizing the average percentage of incorrect classifications
over all categories. Leave-one-out cross validation (LOO) was used
for the training set in all calculations to derive an optimized network.
This means that LOO is used for both the random selection and the
Kennard–Stone selection samples when optimizing the net. In both cases
the trained network was applied to the samples that were held out of
the network for the optimization process. Therefore, these “test” samples
(random and Kennard–Stone) should really be viewed as “external
validation” samples because they were in no way involved in the
network optimization. Further details may be found in ref 29. PNN
models have been built using the Neuroshell Classifier (30).

Data Sets. The input data were arranged in a matrix form. Two input
matrices were built: (i) raw buckets and (ii) scaled buckets (each bucket
was calculated relative to the overall intensity of the spectrum). Farmed
samples (n ) 46) were derived from Italy (n ) 15), Greece (n ) 18),
Croatia (n ) 10), and Turkey (n ) 3). Wild fish samples (n ) 19)
were derived from the Mediterranean basin. Five- and four-group (not
considering the wild fish samples) classifications have been made.

Random sample selection and Kennard–Stone sample selection
have also been used for external validation. Kennard–Stone selection
maximizes the minimal Euclidean distances between already selected
objects and the remaining objects (31). The distance between all samples
is calculated from the descriptor values, and the first two points selected
are those that are furthest apart. The next point selected is the one that
is furthest away from these two. Ideally the number of points selected
should be sufficient to cover the variable space for each class. There
were 44 samples in the training set and 21 in the test data set unless
otherwise noted.

Special attention was paid not to surpass the limit of (n – g)/3, where
g is the number of groups (32). Therefore, a maximum of 20 and 15
variables can be incorporated in the models in the cases of five-group
and four-group classifications, respectively.

The data sets are available from the authors upon request.

RESULTS AND DISCUSSION

Results based on PCA. First, we compare the PCA results
from raw and scaled data. The purpose of the scaling was to
overcome differences in the amount of tissue from which the
oils were originally extracted and the variability in extraction.

PCA exhibits a good discrimination ability of lipid samples
from wild versus farmed specimens (Figure 2). We would
expect that raw data should perform worse in such conditions
because many sources of analytical variation have not been
removed. In fact, we observed that PCA analysis of scaled
buckets gives better results than the PCA with raw data for the
distinction of wild and farmed fish.

The first three PCs calculated from scaled buckets explain in
total 97.5% of the total variance. The examination of the
loadings allows the identification of the variables mainly
responsible of the observed clustering. The spectral regions
defined by the buckets at 0.88, 1.28, 1.32, 2.84, and 5.4 ppm
explain the main variation on the first two components (Figure
2). The typical spectrum assignment of lipids from fish reported
in Figure 1 explains the separation of wild fish by the higher
intensities of methyl (0.88 ppm) and methylene protons (1.32
ppm) together with methylene (2.84 ppm) and methyne protons
(5.4 ppm) in unsaturated fatty acids.

The farmed fish samples showed higher group homogeneity,
as can be expected for standardized feeding and growing
conditions, than the samples of wild fish for which largest
variability and more outliers are observed as a natural conse-
quence of differences in sampling conditions (size, age, etc.).
Although a relative compactness of points for farmed fish can
be observed (cf. Figure 2) the discrimination according to
geographic origin cannot be clearly achieved with PCA. The
PCA of scaled buckets provides much better discrimination
ability even in two dimensions.

The next step was to use PCA scores without pretreatment
(raw) and scaled in an LDA. For LDA five fish groups were
defined (Italy, Greece, Croatia, Turkey, and wild from the
Mediterranean Sea). As the number of columns is bigger than
the number of rows in the input matrix, LDA cannot be applied
directly. A logical solution is to use the PCA scores in further
discrimination studies. Two kinds of splits, random and Ken-
nard–Stone, were applied for the data set. The results are
summarized in Table 1.

The scores were used as a variable pool. The best discrimi-
nating variables have been selected in a forward stepwise
manner either using all scores (64) or using a truncated set of
scores (the first 32). The better results on the “truncated” test
set might be surprising at first sight because the 32 scores are
a subset of the 64 scores. However, the information loss is
negligible, the removed scores comprising mainly the noise.
Generally, the forward selection algorithm could select more
scores from among 64 than from 32 (see the numbers in brackets
in Table 1). Worse results were realized on the testing set;
however, somewhat better results were realized on the training
sets (raw data). Similar tendencies have earlier been found for
olive oil discrimination using both total and truncated PCA

Figure 2. Results of PCA for scaled buckets, mean centered data.
Discrimination of farmed and wild fish samples. Score 1 against score 2
(the total variance explained by the given PCs can be found in brackets).
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scores in LDA (29). A similar table can be constructed if scaling
the buckets to total intensity as data pretreatment (Table 2).

Again, the same if not better results can be provided using
the truncated pool of scores (32) than using the pool for all
scores (64). The forward selection algorithm has included fewer
variables (PC scores) in case of mean centering than in the case
of scaling. This may indicate a slight overfit for scaled data.
Keeping in mind the philosophy of parsimony, mean centering
is advisable for the bucketed NMR data.

Although the numbers of scores involved are far from being
close to the limit set by Defernez and Kemsley (32), some overfit
can be suspected in the case of using a pool for all scores. It
should be noted that the wild-farmed discrimination is close to
perfect even if the classification of all five groups is not. The
worse case scenario can be seen on Figure 3: the canonical
scores (roots) are plotted against each other. Only two samples
for wild fish were misclassified.

However, it is relatively easy to find boundaries for clas-
sification as shown in Figure 3 and also in Figure 4 in which
the outlying observations for wild samples lay on the outskirt
of the point cloud for farmed fish. Figure 4 demonstrates an
intentionally wrong data pretreatment (without mean centering)
and not the best discrimination ability (score 1 not involved).
Even in this case the wild and farmed status can be distinguished.

Moreover, the compactness of points for farmed fish can be
observed in this projection, whereas a larger variability is
observed for wild fish.

LDA of Raw and Scaled NMR Profiles. Results of five-
group and four-group classifications are summarized below.

Four types of analyses have been made: raw buckets and
scaled buckets have been used both with random and with
Kennard–Stone splits of training and test sets. The correct
classifications (in %) are summarized in Table 3.

From this table it can be concluded that, as expected, the
scaling is a somewhat better option than analyzing the raw
buckets. The average correct classifications (training + test sets)
amounted from 88 to 97% depending on data (raw and scaled),

Table 1. Results of LDA of PC Scoresa

raw RS
(64 scores)

raw KS
(64 scores)

scaled RS
(64 scores)

scaled KS
(64 scores)

training 97.7 (12) 100.0 (16) 90.9 (10) 100 (11)
testing 33.3 (12) 77.3 (16) 71.4 (10) 59.1 (11)

raw RS
(32 scores)

raw KS
(32 scores)

scaled RS
(32 scores)

scaled KS
(32 scores)

training 95.5 (9) 97.7 (13) 93.2 (8) 90.7 (6)
testing 66.7 (9) 81.8 (13) 76.2 (8) 86.4 (6)

a The Scores were derived from PCA of correlation matrices for raw or scaled
spectra. Either all scores (64) were used as a Variable pool or the truncated set
of scores was used (the first 32 scores). Correct classifications are in percent.
The number of scores incorporated in the LDA model selected by forward selection
algorithm can be found in brackets. RS ) random selection; KS ) Kennard–Stone
selection.

Table 2. Results of LDA of PC Scores from Mean Centered Spectraa

raw RS
(64 scores)

raw KS
(64 scores)

scaled RS
(64 scores)

scaled KS
(64 scores)

training 93.2 (10) 97.7 (10) 97.7 (5) 95.3 (10)
testing 66.6 (10) 90.9 (10) 90.5 (5) 95.5 (10)

raw RS
(32 scores)

raw KS
(32 scores)

scaled RS
(32 scores)

scaled KS
(32 scores)

training 93.2 (10) 97.7 (10) 90.9 (4) 83.7 (7)
testing 66.7 (10) 90.9 (10) 90.5 (4) 90.9 (7)

a Either all scores (64) were used as a variable pool or the truncated set of
scores was used (the first 32 scores). correct classifications are in percent. The
number of scores incorporated in the LDA model selected by forward selection
algorithm can be found in brackets. RS ) random selection; KS ) Kennard–Stone
selection.

Figure 3. Results of stepwise LDA of PC scores calculated from scaled
data. Three-dimensional plot of canonical scores (plot of root 1, root 2,
and root 3). Points for misclassified wild samples are indicated by a star
and a number.

Figure 4. Results of PCA for scaled buckets (without mean centering).
Score 2 is plotted against score 3.

Table 3. Results of LDA for Raw and Scaled NMR Profiles (without
PCA)a

raw RS raw KS scaled RS scaled KS

Five-Group Classifications
training 93.2 (6) 93.0 (10) 100.0 (8) 95.3 (8)
testing 76.2 (6) 90.9 (10) 90.5 (8) 100.0 (8)

Four-Group Classifications
training 100.0 (8) 96.7 (7) 100.0 (6) 90.0 (4)
testing 88.2 (8) 93.8 (7) 70.6 (6) 93.8 (4)

a Correct classifications are in percent. The Number of chemical shifts selected
by forward selection algorithm can be found in brackets. RS ) random selection;
KS ) Kennard–Stone selection.
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on the split (random or Kennard–Stone), and on number of
groups to be classified (four or five).

Table 4 summarizes some PNN (33) results for the randomly
and Kennard–Stone selected training and test samples using 2
(wild vs farmed) or 10 (country of origin) PCA scores for input.
These data further reinforce the findings that such class
discriminations are readily feasible as a consequence of the use
of such highly diagnostic methods as 1H NMR. Although the
prediction accuracy is similar to that of the LDA method, fewer
scores are required for the wild versus farmed distinction.

1H NMR lipid profiling combined with multivariate statistical
analysis is able to discriminate wild and farmed fishes. Although
the differentiation of geographic origins is somewhat worse,
the potential is clear: by taking more samples and better design
(balanced data sets, i.e., approximately equal number of samples
for each country), the desired task (discrimination of samples
according to geographical origin) can be made.

Wild and farmed discrimination can be found in the
literature (19, 34, 35). The previous NMR approach reported
in the literature is based on 2H NMR, which requires time-
consuming data acquisition. Moreover, D/H ratios have to be
computed through curve fitting of the NMR signals, which is
in contrast to the present approach, in which chemometrics is
used to identify the relevant information in the spectra without
any a priori knowledge.

The mentioned sources (34, 35) extracted various phospho-
lipid classes and fatty acids. After extraction and quantification
PCA and quadratic discriminant analysis have provided the
given separation using as low as four fatty acids (34). All labor-
intensive extraction–quantification procedures became unneces-
sary when using the 1H NMR profiling approach reported here.
In the present case, the relevant information to address fish
authenticity issues can be found in the main NMR signals of
the lipid spectrum. This allows us to reasonably imagine a
transfer of this method to a flow NMR version using a lower
number of scans (29). Such a flow NMR method would
drastically increase sample throughput.

1H NMR profiling of lipid extracts combined with discrimi-
nant analysis holds all relevant information to unambiguously
classify wild and farmed samples of Gilthead sea bream.
Besides, the lipid profiles also allow extracting information that
could be correlated to geographic origin. In this case, classifica-
tion results must be interpreted carefully in the view of using
them as robust information to establish the geographic origin
of fish. It is indeed clearly established that the feeding process
would affect significantly the lipid profile of fish. Various
production practices, especially including the use of different
feeds, may contribute to a compositional variability of the fish
extracts. Then, it is important to underline the need to deeply
assess the effect of feedings all across Mediterranean farms to
unambiguously assign market fish to their geographic origin of

production. These encouraging results need thus to be confirmed
by the analysis of a greater number of samples including feeding
trials.
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